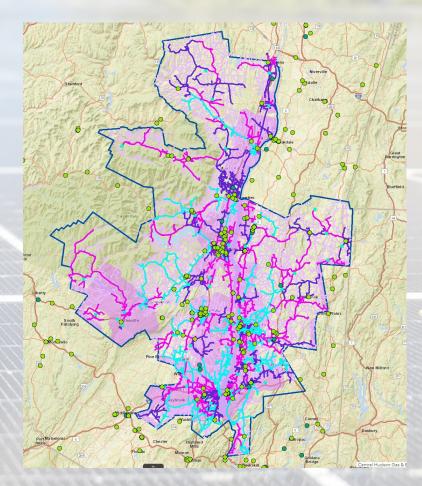

Central Hudson Hosting Capacity Maps


Dylan Piccorelli & John Scalo

Central Hudson – Distribution Planning & Interconnections

Hosting Capacity Maps

Photovoltaic Map

Energy Storage Map


Electrification Map

https://www.cenhud.com/en/my-energy/distributed-generation/ https://www.cenhud.com/en/my-energy/distributed-generation/hosting-capacity-maps/

Danbury

What Factors Impact Hosting Capacity?

Existing DG

Distribution Equipment

Conductor

PV Hosting Capacity Map Pop-Ups Explained

Local Hosting Capacity for PV

(1 of 2)

► □ ×

	0.01 - 0.29
•	0.30 - 0.49
•	0.50 - 0.99
•	1.00 - 1.49

1.50 - 1.99

2.00 - 2.99

3.00 - 4.99

9D

5.00 - 1000

8052

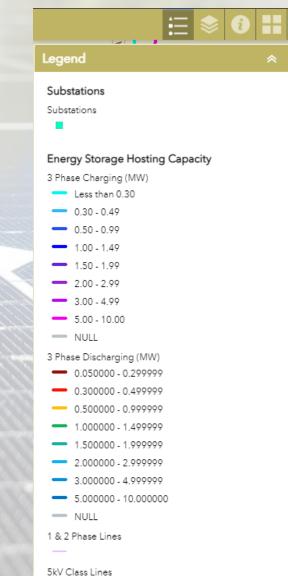
— 0

1	Substation	NORTH CHELSEA	
1	Feeder	8052	
/	Section ID	c37925112_0	ЭН
	Section Voltage (kVLL)	13.20	
R	Section Hosting Capacity (MW)	3.40	
	Flicker (MW)	4.62	
	Primary Over-Voltage (MW)	6.00	
	Primary Voltage Deviation (MW)	6.00	
	Regulator Deviation (MW)	3.40	
	Thermal from Generation (MW)	6.00	
	Anti-Islanding (MW)	0.96	
1	DG Connected (MW) (Circuit)	0.51	
	DG in Queue (MW) (Circuit)	0.03	
	NYISO Load Zone	G	
	HCA Refresh Date	9/30/2023	
	DG Connected/In Queue Refresh Date (Circuit)	2/11/2024	
	DG Installed Since Last HCA Refresh (MW) (Circuit)	0.23	
	Notes	None	

Section Hosting Capacity is based on the 4 criteria identified in **Pink**

Green indicates fields updated monthly with queue data. All other fields are updated annually/semiannually with each hosting capacity analysis.

ESS Hosting Capacity Map Pop-Ups



3 Phase Charging (MW)		
Substation	INWOOD AVE	
Feeder	6062	_
Section ID	c3264451_1_OH	
Base Voltage (kVLL)	13.20	
Section Hosting Capacity (<u>MW)</u>	2.10	
Primary Under Voltage (MW)	6.00	
Primary Voltage Deviation (MW)	6.00	
Regulator Deviation (MW)	6.00	
Thermal from Load (MW)	2.10	
DG Connected (MW)	0.16	1////
DG In-Queue (MW)	0.00	-7777
NYISO Load Zone	G	1 411
Hosting Capacity Refresh Date	9/30/2023	
DG Connected / In- Queue Refresh Date	2/11/2024	
DG Installed Since Last HCA Refresh (MW)	0.10	

Charging Layer

► □× (1 of 2) 3 Phase Discharging (MW) INWOOD AVE Substation 6062 Feeder c3264451_1_OH Section ID Base Voltage (kVLL) 13.20 Section Hosting Capacity 2.30 Generation (MW) Flicker (MW) 6.00 Primary Over-Voltage 6.00 (MW) Primary Voltage Deviation 6.00 (MW) Primary Regulator 6.00 Deviation (MW) Thermal from Generation 2.30 (MW) Anti-Islanding Limit 0.41 Generation (MW) 0.16 DG Connected (MW) DG In-Queue (MW) 0.00 NYISO Load Zone G Hosting Capacity Refresh 9/30/2023 Date DG Connected/In-Queue 2/11/2024 Refresh Date DG Installed Since Last 0.10 HCA Refresh (MW) None Notes

Discharging Layer

Electrification Hosting Capacity Map Pop-Ups

(1 of 2)	► □×	(2 of 2)	< □
Summer 3 Phase		Unlike the PV & ESS maps, values	
Feeder Substation/Bank Name	6044 SPACKENKILL	are per circuit not per segment	6044 SPACKENKILL
Operating Voltage (kV)	13.20	Operating Voltage (kV)	13.20
Summer Peak Load (MVA)	4.05	Winter Peak Load (MVA)	
Feeder Summer Rating (MVA)	6.00	Feeder Winter Rating (MVA)	6.00
Substation/Bank Summer Rating (MVA)	47.26	Substation/Bank Winter Rating (MVA)	47.26
Summer Load Capacity Headroom (MW)	1.95	Winter Load Capacity Headroom (MW)	3.38
Refresh Date	1/15/2024	Refresh Date	1/15/2024
Zoom to	•••	Zoom to	

Note: "Operating Voltage (kV)" of the substation transformer does not necessarily reflect the voltage of the selected line segment.

Hosting Capacity Substation Pop-Ups

(3 of 4)	<> □>
Substation Level System Data: N CHELSEA #1	ORTH
Substation/Bank Installed DG (MW)	2.84
Substation/Bank Queued DG (MW)	10.03
Transmission Node PTID	355582
Substation/Bank Total DG (MW)	12.87
2022 Substation/Bank Peak (MW)	10.35
Substation/Bank Thermal Capacity (MVA)	38.64
Estimated 3VO Protection Threshold (MVA)	N/A
Substation Backfeed Protection	Yes
DG Connected/In Queue Refresh Date	2/11/2024
HCA Refresh Date	9/30/2023

...

12 of 11

Zoom to

Green indicates fields updated monthly with queue data.

People. Power. Possibilities. Central Hudson

Example of a Strong PV Feeder

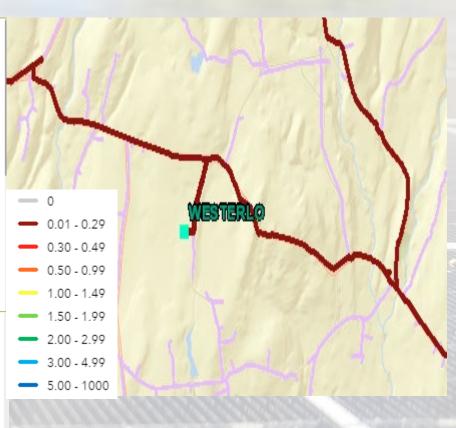
When looking for a "strong" feeder, look for the following:

- 1. Gradual decrease in hosting capacity as you move away from the substation
- 2. High feeder head hosting capacity
- 3. Minimum hosting capacity > 0.5 MW

4. Section hosting capacity provides an estimate of the DER connection that could be feasible at the location

5. Recommend >100 kW apply for a 3phase interconnection

Local Hosting Capacity for PV	
Substation	SPACKENKILL
Feeder	6041
Section ID	c226631026_2_OH
Section Voltage (kVLL)	13.20
Section Hosting Capacity (MW)	2.00
Flicker (MW)	4.46
Primary Over-Voltage (MW)	5.50
Primary Voltage Deviation (MW)	5.10
Regulator Deviation (MW)	2.00
Thermal from Generation (MW)	6.00
Anti-Islanding (MW)	4.91
DG Connected (MW) (Circuit)	0.03
DG in Queue (MW) (Circuit)	0.00
NYISO Load Zone	G
HCA Refresh Date	9/30/2023
DG Connected/In Queue Refresh Date (Circuit)	2/11/2024
DG Installed Since Last HCA Refresh (MW) (Circuit)	0.02
Notes	Fault Current Limitation



— O

Example of a Weak PV Feeder

- A "weak" feeder will have the following:
- 1. Rapid decrease in available hosting capacity on mainline
- 2. Low feeder head hosting capacity
- 3. Attempting to interconnect a large DER system to a circuit such as this one will likely occur in high upgrade costs and possibly some downsizing (or new feeder)

Local Hosting Capacity for PV		
Substation	WESTERLO	
Feeder	1092	
Section ID	c4675434_4_OH	
Section Voltage (kVLL)	13.20	
Section Hosting Capacity (MW)	0.10	
Flicker (MW)	3.85	
Primary Over- Voltage (MW)	3.80	
Primary Voltage Deviation (MW)	0.10	
Regulator Deviation (MW)	0.10	
Thermal from Generation (MW)	3.00	
Anti-Islanding (MW)	0.00	
DG Connected (MW) (Circuit)	4.91	
DG in Queue (MW) (Circuit)	0.07	
NYISO Load Zone	G	
HCA Refresh Date	9/30/2023	
DG Connected/In Queue Refresh Date (Circuit)	2/11/2024	
DG Installed Since Last HCA Refresh (MW) (Circuit)	0.30	

Final Tips - Navigating the Hosting Capacity Map

1. Always be attentive on the queued-ahead DER and DER interconnected since the most recent refresh

2. For all circuits, especially weaker ones, the further you are from the substation the higher risk there is for expensive upgrade costs

3. Any significant and immediate drop in hosting capacity may identify the location of a stepdown transformer. You can check local voltage within the popup boxes to confirm.

4. If the location of a proposed system is adjacent to two circuits, you can use the hosting capacity map to see which circuit will give you the best chance of avoiding high upgrade costs.

5. POI determines substation and circuit interconnection

Links

<u>Central Hudson Links</u> <u>PV Methodology & Usage</u>

ESS Methodology & Usage

Distributed Generation Website

Hosting Capacity Maps

Joint Utilities of NY Links

Joint Utilities Hosting Capacity

Joint Utilities Stakeholder Session 5-18-2022

Joint Utilities Stakeholder Session 11-2-2022

Thank You

Support: DG@cenhud.com

